a2zpapers.com

Exam. Code : 211002 Subject Code : 5541

M.Sc. (Mathematics) $2^{\text {nd }}$ Semester TENSORS AND DIFFERENTIAL GEOMETRY
 Paper-MATH-562

Time Allowed-Three Hours] [Maximum Marks-100
Note :-Attempt TWO questions from each unit. All questions carry equal marks.

UNIT-I

1. Define Certesian Tensor of order 4. Also define contraction and state and prove contraction theorem.
2. Show that δ_{ij} is a tensor of order two.
3. Show that the transformation of a mixed tensor possess the transitive property.
4. Show that Christoffel symbols do not behave like tensor.

UNIT-II

5. Define principal normal and binormal. Find the equations of the principal normal and binormal.
6. State and prove Serret-Frenet formulae.

a2zpapers.com

7. Find the curvature and torsion of the curve

$$
x=a(u-\sin u), y=a(1-\cos u), z=b u .
$$

8. Find the centre and radius of spherical curvature.

UNIT-III

9. Investigate the spherical indicatrices of the circular helix $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta, \mathrm{z}=\mathrm{c} \theta, \mathrm{c} \neq 0$.
10. Find the envelop of the plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ where

$$
\mathrm{a} l^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=0
$$

11. Find the condition that the surface given by $z=f(x, y)$ may be developable.
12. Calculate the fundamental magnitudes to the surface $2 z=a x^{2}+2 h x y+b y^{2}$ taking x, y as parameter.

UNIT-IV

13. Define conjugate direction. Find an analytic expression for two directions to be conjugate.
14. Show that the necessary and sufficient condition that the parametric curves be lines of curvature are $\mathrm{F}=0$, $\mathrm{M}=0$.
15. Find the asymptotic lines on the surface $\mathrm{z}=\mathrm{x} \sin \mathrm{y}$.
16. State and prove theorem of Beltrami and Enneper.

7392(2518)/CTT-39317 2 (Contd.)

UNIT-V

17. Show that the curves $u+v=$ constant are geodesics on the surface with metric

$$
\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2}
$$

18. Show that geodesic curvature vector of any curve is orthogonal to the curve.
19. State and prove Gauss - Bonnet theorem.
20. Find the condition that surface s may be mapped conformally onto surface s'.
